学术论文: |
在国内外权威学术期刊IEEE TBD、PR、IDA、IJB、KBS、ESWA、APIN、JETAI发表相关学术论文60余篇。部分发表的文章目录如下:
[1] Wang, L., Li, L., Li, Q. Learning high-dependence Bayesian network classifier with robust topology. Expert Systems with Applications, 2024,239: 122395. (中科院SCI一区) [2] Wang, L., Wang, J., Guo, L. Efficient heuristics for learning scalable Bayesian network classifier from labeled and unlabeled data. Applied Intelligence, 2024,1-23. (中科院SCI二区) [3] Wang, L., Wei, J., Li, K., Zhou, J. Exploiting the implicit independence assumption for learning directed graphical models. Intelligent Data Analysis, 2024. (SCI) [4] Wang, L., Wang, L., Guo, L., Li, Q. Exploring complex multivariate probability distributions with simple and robust bayesian network topology for classification. Applied Intelligence, 2023, 53(24): 29799-29817. (中科院SCI二区) [5] Kong, H., Wang, L. Flexible model weighting for one-dependence estimators based on point-wise independence analysis. Pattern Recognition, 2023, 139: 109473. (中科院SCI一区) [6] Wang, L., Fan, H., Kong, H. From undirected dependence to directed causality: A novel Bayesian learning approach. Intelligent Data Analysis, 2022, 26(5): 1275-1302. (SCI) [7] Wang, L., Zhou, J., Wei, J., Pang, M. Learning causal Bayesian networks based on causality analysis for classification. Engineering Applications of Artificial Intelligence, 2022, 114: 105212. (中科院SCI一区) [8] Wang, L., Xie, Y., Pang, M. Alleviating the attribute conditional independence and IID assumptions of averaged one-dependence estimator by double weighting. Knowledge Based Systems, 2022, 250: 109078. (中科院SCI一区) [9] Shenglei Chen, Xin Ma, Linyuan Liu and Limin Wang. Selective AnDE based on attributes ranking by Maximin Conditional Mutual Information (MMCMI). Journal of Experimental & Theoretical Artificial Intelligence, 2022, 1-20. (中科院SCI二区)
[10] Yi Ren, Limin Wang, Xiongfei Li, Meng Pang and Junyang Wei. Stochastic optimization for bayesian network classifiers. Applied Intelligence, 2022. (中科院SCI二区) [11] Limin Wang, Xinhao Zhang, Kuo Li and Shuai Zhang. Semi-supervised learning for k-dependence Bayesian classifiers. Applied Intelligence, 2022, 52, 3604-3622. (中科院SCI二区) [12] Limin Wang, Shuai Zhang, Musa Mammadov, Kuo Li, Xinhao Zhang and Siyuan Wu. Semi-supervised weighting for averaged one-dependence estimators. Applied Intelligence, 2022, 52, 4057-4073. (中科院SCI二区) [13] 刘洋,王利民,孙铭会. 基于信息熵函数的启发式贝叶斯因果推理. 计算机学报,2021, 44, 2135-2147. (CCF中文A类) [14] He Kong, Xiaohu Shi, Limin Wang, Yang Liu, Musa Mammadov and Gaojie Wang. Averaged tree-augmented one-dependence estimators. Applied Intelligence, 2021, 51, 4270-4286. (中科院SCI二区) [15] Limin Wang, Sikai Qi, Yang Liu, Hua Lou and Xin Zuo. Bagging k-dependence Bayesian network classifiers. Intelligent Data Analysis, 2021, 25 (3), 641-667. (SCI) [16] Yang Liu, Limin Wang, Musa Mammadov, Shenglei Chen, Gaojie Wang, Sikai Qi and Minghui Sun. Hierarchical Independence Thresholding for learning Bayesian network classifiers. Knowledge-Based Systems, 2021, 212, 106627. (中科院SCI一区) [17] Limin Wang, Peng Chen, Shenglei Chen and Minghui Sun. A novel approach to fully representing the diversity in conditional dependencies for learning Bayesian network classifier. Intelligent Data Analysis, 2021, 25, 35-55. (SCI) [18] Yang Liu, Limin Wang and Musa Mammadov. Learning semi-lazy Bayesian network classifier under the c.i.i.d assumption. Knowledge-Based Systems, 2020, 208, 106422. (中科院SCI一区) [19] Hua Lou, Gaojie Wang, Limin Wang and Musa Mammadov. Model Weighting for One-Dependence Estimators by Measuring the Independence Assumptions. IEEE Access, 2020, 8, 150465-150477. (SCI) [20] Zhiyi Duan, Limin Wang, Shenglei Chen and Minghui Sun. Instance-based weighting filter for superparent one-dependence estimators. Knowledge-Based Systems, 2020, 203, 106085. (中科院SCI一区) [21] Zhiyi Duan, Limin Wang and Minghui Sun. Efficient heuristics for learning Bayesian network from labeled and unlabeled data. Intelligent Data Analysis, 2020, 24, 385-408. (SCI) [22] Limin Wang, Jie Chen, Yang Liu and Minghui Sun. Self-Adaptive Attribute Value Weighting for Averaged One-Dependence Estimators. IEEE Access, 2020, 8, 27887-27900. (SCI) [23] 王利民, 姜汉民. 强化属性依赖关系的K阶贝叶斯分类模型. 控制与决策, 2019, 34(6), 1234-1240. (EI) [24] Siqi Gao, Hua Lou, Limin Wang, Yang Liu and Tiehu Fan. Universal Target Learning: An Efficient and Effective Technique for Semi-Naive Bayesian Learning. Entropy, 2019, 21(8), 729. (SCI) [25] Yang Zhang, Limin Wang, Zhiyi Duan and Minghui Sun. Structure Learning of Bayesian Network Based on Adaptive Thresholding. Entropy, 2019, 21(7), 665. (SCI) [26] Zhiyi Duan, Limin Wang and Minghui Sun. Model Matching: A Novel Framework to use Clustering Strategy to Solve the Classification Problem. IEEE Access, 2019, 7, 76227-76240. (SCI) [27] Yuguang Long, Limin Wang and Minghui Sun. Structure Extension of Tree-Augmented Naive Bayes. Entropy, 2019, 21(8), 721. (SCI) [28] Limin Wang, Yang Liu, Musa Mammadov, Minghui Sun and Sikai Qi. Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance. Entropy, 2019, 21(5), 489. (SCI) [29] Zhiyi Duan, Limin Wang, Musa Mammadov, Hua Lou and Minghui Sun. Discriminatory Target Learning: Mining Significant Dependence Relationships from Labeled and Unlabeled Data. Entropy, 2019, 21(5), 537. (SCI) |